A posteriori error estimates for the JohnsonNédélec FEMBEM coupling

M. Aurada, M. Feischl, M. Karkulik, D. Praetorius

Research output: Contribution to journalArticle

6 Citations (Scopus)


Only very recently, Sayas [The validity of JohnsonNédélecs BEM-FEM coupling on polygonal interfaces. SIAM J Numer Anal 2009;47:345163] proved that the JohnsonNédélec one-equation approach from [On the coupling of boundary integral and finite element methods. Math Comput 1980;35:106379] provides a stable coupling of finite element method (FEM) and boundary element method (BEM). In our work, we now adapt the analytical results for different a posteriori error estimates developed for the symmetric FEMBEM coupling to the JohnsonNédélec coupling. More precisely, we analyze the weighted-residual error estimator, the two-level error estimator, and different versions of (h-h/2)-based error estimators. In numerical experiments, we use these estimators to steer h-adaptive algorithms, and compare the effectivity of the different approaches. © 2011 Elsevier Ltd. All rights reserved.
Original languageEnglish
Pages (from-to)255-266
Number of pages12
JournalEngineering Analysis with Boundary Elements
Publication statusPublished - 1 Feb 2012
Externally publishedYes

Fingerprint Dive into the research topics of 'A posteriori error estimates for the JohnsonNédélec FEMBEM coupling'. Together they form a unique fingerprint.

  • Cite this