Simulating wildfire patterns using a small-world network model

J. K. Adou, Y. Billaud, D. A. Brou, J. P. Clerc, J. L. Consalvi, A. Fuentes, A. Kaiss, F. Nmira, B. Porterie, L. Zekri, N. Zekri

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

This paper presents the development and validation results of a weighted small-world network model designed to simulate fire patterns in real heterogeneous landscapes. Fire spread is simulated on a gridded landscape, a mosaic in which each cell represents an area of the land surface. In this model, the interaction between burning and non-burning cells (here, due to flame radiation) may extend well beyond nearest neighbors, and depends on local conditions of wind, topography, and vegetation. An approach based on the coupling of the solid flame model with the Monte Carlo method is used to predict the radiative heat flux from the flame generated by the burning of each combustible cell to its neighbors. The weighting procedure takes into account latency (a combustible cell will only ignite when it has accumulated enough energy along time) and flaming persistence of burning cells. The model is applied to very different fire scenarios: a historical Mediterranean fire that occurred in southeastern France in 2005 and experimental fires conducted in arid savanna fuels in South Africa in 1992. Model results are found to be in agreement with real fire patterns, in terms both of rate of spread, and of the area and shape of the burn. This work also shows that the fractal properties of fire patterns predicted by the model are similar to those observed from satellite images of three other Mediterranean fire scars. © 2010 Elsevier B.V. All rights reserved.
Original languageEnglish
Pages (from-to)1463-1471
Number of pages9
JournalEcological Modelling
DOIs
Publication statusPublished - 10 Jun 2010
Externally publishedYes

Fingerprint Dive into the research topics of 'Simulating wildfire patterns using a small-world network model'. Together they form a unique fingerprint.

  • Cite this

    Adou, J. K., Billaud, Y., Brou, D. A., Clerc, J. P., Consalvi, J. L., Fuentes, A., Kaiss, A., Nmira, F., Porterie, B., Zekri, L., & Zekri, N. (2010). Simulating wildfire patterns using a small-world network model. Ecological Modelling, 1463-1471. https://doi.org/10.1016/j.ecolmodel.2010.02.015