Structural optimization of uncertain dynamical systems considering mixed-design variables

Hector A. Jensen, Juan G. Sepulveda

Research output: Contribution to journalArticle

8 Citations (Scopus)


In this paper attention is directed to the reliability-based optimization of uncertain structural systems under stochastic excitation involving discretecontinuous sizing type of design variables. The reliability-based optimization problem is formulated as the minimization of an objective function subject to multiple reliability constraints. The probability that design conditions are satisfied within a given time interval is used as a measure of system reliability. The problem is solved by a sequential approximate optimization strategy cast into the framework of conservative convex and separable approximations. To this end, the objective function and the reliability constraints are approximated by using a hybrid form of linear, reciprocal and quadratic approximations. The approximations are combined with an effective sensitivity analysis of the reliability constraints in order to generate explicit expressions of the constraints in terms of the design variables. The explicit approximate sub-optimization problems are solved by an appropriate discrete optimization technique. The optimization scheme exhibits monotonic convergence properties. Two numerical examples showing the effectiveness of the approach reported herein are presented. © 2010 Elsevier Ltd. All rights reserved.
Original languageEnglish
Pages (from-to)269-280
Number of pages12
JournalProbabilistic Engineering Mechanics
Publication statusPublished - 1 Apr 2011

Fingerprint Dive into the research topics of 'Structural optimization of uncertain dynamical systems considering mixed-design variables'. Together they form a unique fingerprint.

  • Cite this