Applied Numerical Mathematics

M. Aurada, S. Ferraz-Leite, P. Goldenits, M. Karkulik, M. Mayr, D. Praetorius

Resultado de la investigación: Contribución a los distintos tipos de conferenciaArtículo

10 Citas (Scopus)

Resumen

For a boundary integral formulation of the 2D Laplace equation with mixed boundary conditions, we consider an adaptive Galerkin BEM based on an (h-h/2)-type error estimator. We include the resolution of the Dirichlet, Neumann, and volume data into the adaptive algorithm. In particular, an implementation of the developed algorithm has only to deal with discrete integral operators. We prove that the proposed adaptive scheme leads to a sequence of discrete solutions, for which the corresponding error estimators tend to zero. Under a saturation assumption for the non-perturbed problem which is observed empirically, the sequence of discrete solutions thus converges to the exact solution in the energy norm. © 2011 IMACS. Published by Elsevier B.V. All rights reserved.
Idioma originalInglés
Páginas226-245
Número de páginas20
DOI
EstadoPublicada - 1 abr 2012
Publicado de forma externa
Eventoconference -
Duración: 1 abr 2012 → …

Conferencia

Conferenciaconference
Período1/04/12 → …

Huella Profundice en los temas de investigación de 'Applied Numerical Mathematics'. En conjunto forman una huella única.

  • Citar esto

    Aurada, M., Ferraz-Leite, S., Goldenits, P., Karkulik, M., Mayr, M., & Praetorius, D. (2012). Applied Numerical Mathematics. 226-245. Papel presentado en conference, . https://doi.org/10.1016/j.apnum.2011.03.008